首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9639篇
  免费   2568篇
  国内免费   1011篇
化学   6777篇
晶体学   175篇
力学   72篇
综合类   62篇
数学   43篇
物理学   6089篇
  2024年   5篇
  2023年   85篇
  2022年   201篇
  2021年   259篇
  2020年   364篇
  2019年   281篇
  2018年   283篇
  2017年   279篇
  2016年   435篇
  2015年   476篇
  2014年   560篇
  2013年   991篇
  2012年   646篇
  2011年   682篇
  2010年   556篇
  2009年   625篇
  2008年   627篇
  2007年   754篇
  2006年   743篇
  2005年   565篇
  2004年   491篇
  2003年   479篇
  2002年   393篇
  2001年   363篇
  2000年   292篇
  1999年   236篇
  1998年   213篇
  1997年   208篇
  1996年   169篇
  1995年   165篇
  1994年   147篇
  1993年   122篇
  1992年   87篇
  1991年   62篇
  1990年   66篇
  1989年   42篇
  1988年   45篇
  1987年   38篇
  1986年   40篇
  1985年   26篇
  1984年   32篇
  1983年   6篇
  1982年   14篇
  1981年   19篇
  1980年   14篇
  1979年   4篇
  1978年   10篇
  1975年   5篇
  1973年   5篇
  1970年   2篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
21.
22.
A novel procedure to optimize the 3D morphological characterization of nanomaterials by means of high angle annular dark field scanning-transmission electron tomography is reported and is successfully applied to the analysis of a metal- and halogen-free ordered mesoporous carbon material. The new method is based on a selection of the two parameters (μ and β) which are key in the reconstruction of tomographic series by means of total variation minimization (TVM). The parameter-selected TVM reconstructions obtained using this approach clearly reveal the porous structure of the carbon-based material as consisting of a network of parallel, straight channels of ≈6 nm diameter ordered in a honeycomb-type arrangement. Such an unusual structure cannot be retrieved from a TVM 3D reconstruction using default reconstruction values. Moreover, segmentation and further quantification of the optimized 3D tomographic reconstruction provide values for different textural parameters, such as pore size distribution and specific pore volume that match very closely with those determined by macroscopic physisorption techniques. The approach developed can be extended to other reconstruction models in which the final result is influenced by parameter choice.  相似文献   
23.
During the past two decades, single-atom-centered medium-sized germanium clusters [M@Gen] (M=transition metals, n>12) have been extensively explored, both from theoretical perspectives and experimental gas-phase syntheses. However, the actual structural arrangements of the Ge13 and Ge14 endohedral cages are still ambiguous and have long remained an unresolved problem for experimental implementation. In this work, we successfully synthesize 13-/14-vertex Ge clusters [Nb@Ge13]3− ( 1 ) and [Nb@Ge14]3− ( 2 ), which are structurally characterized and exhibit unprecedented topologies, neither classical deltahedra nor 3-connected polyhedral structures. Theoretical analysis indicates that the major stabilization of the Ge backbones arises due to the substantial interaction of Ge 4p-AOs with the endohedral Nb 4d-AOs through three/four-center two-electron bonds with an enhanced electron density accumulated over the shortest Nb−Ge13 contact in 1 . Low occupancies of the direct two-center two-electron (2c–2e) Nb−Ge and Ge−Ge σ bonds point to a considerable degree of electron delocalization over the Ge cages revealing their electron deficiency.  相似文献   
24.
Controlling redox activity of judiciously appended redox units on a photo-sensitive molecular core is an effective strategy for visible light energy harvesting and storage. The first example of a photosensitizer - electron donor coordination compound in which the photoinduced electron transfer step is used for light to electrical energy conversion and storage is reported. A photo-responsive Ru-diimine module conjugated with redox-active catechol groups in [Ru(II)(phenanthroline-5,6-diolate)3]4− photosensitizer can mediate photoinduced catechol to dione oxidation in the presence of a sacrificial electron acceptor or at the surface of an electrode. Under potentiostatic condition, visible light triggered current density enhancement confirmed the light harvesting ability of this photosensitizer. Upon implementation in galvanostatic charge-discharge of a Li battery configuration, the storage capacity was found to be increased by 100 %, under 470 nm illumination with output power of 4.0 mW/cm−2. This proof-of-concept molecular system marks an important milestone towards a new generation of molecular photo-rechargeable materials.  相似文献   
25.
Intricate behaviour of one-electron potentials from the Euler equation for electron density and corresponding gradient force fields in crystals was studied. Channels of locally enhanced kinetic potential and corresponding saddle Lagrange points were found between chemically bonded atoms. Superposition of electrostatic and kinetic potentials and electron density allowed partitioning any molecules and crystals into atomic - and potential-based -basins; -basins explicitly account for the electron exchange effect, which is missed for -ones. Phenomena of interatomic charge transfer and related electron exchange were explained in terms of space gaps between zero-flux surfaces of - and -basins. The gap between - and -basins represents the charge transfer, while the gap between - and -basins is a real-space manifestation of sharing the transferred electrons caused by the static exchange and kinetic effects as a response against the electron transfer. The regularity describing relative positions of -, -, and - basin boundaries between interacting atoms was proposed. The position of -boundary between - and -ones within an electron occupier atom determines the extent of transferred electron sharing. The stronger an H⋅⋅⋅O hydrogen bond is, the deeper hydrogen atom's -basin penetrates oxygen atom's -basin, while for covalent bonds a -boundary closely approaches a -one indicating almost complete sharing of the transferred electrons. In the case of ionic bonds, the same region corresponds to electron pairing within the -basin of an electron occupier atom.  相似文献   
26.
27.
《Arabian Journal of Chemistry》2020,13(11):8424-8457
Nowadays, increasing extortions regarding environmental problems and energy scarcity have stuck the development and endurance of human society. The issue of inorganic and organic pollutants that exist in water from agricultural, domestic, and industrial activities has directed the development of advanced technologies to address the challenges of water scarcity efficiently. To solve this major issue, various scientists and researchers are looking for novel and effective technologies that can efficiently remove pollutants from wastewater. Nanoscale metal oxide materials have been proposed due to their distinctive size, physical and chemical properties along with promising applications. Cupric Oxide (CuO) is one of the most commonly used benchmark photocatalysts in photodegradation owing to the fact that they are cost-effective, non-toxic, and more efficient in absorption across a significant fraction of solar spectrum. In this review, we have summarized synthetic strategies of CuO fabrication, modification methods with applications for water treatment purposes. Moreover, an elaborative discussion on feasible strategies includes; binary and ternary heterojunction formation, Z-scheme based photocatalytic system, incorporation of rare earth/transition metal ions as dopants, and carbonaceous materials serving as a support system. The mechanistic insight inferring photo-induced charge separation and transfer, the functional reactive radical species involved in a photocatalytic reaction, have been successfully featured and examined. Finally, a conclusive remark regarding current studies and unresolved challenges related to CuO are put forth for future perspectives.  相似文献   
28.
Abstract

Three iso-quinolinium ylids are studied by visible electron absorption spectroscopy from the point of view of their interactions with solvent molecules. The quantum mechanical calculations with Spartan 14 Program and solvatochromism of the intramolecular charge transfer visible absorption band of the studied molecules emphasized the prevalence of universal orientation-induction interactions in aprotic solvents and additionally the presence of hydrogen bond between the ylid molecules and the hydroxyl groups of the solvent molecules. The contribution of each type of interactions in the studied solutions is finally established by a multilinear regression applied to solvatochromic data.  相似文献   
29.
Redox active metalloenzymes catalyse a range of biochemical processes essential for life. However, due to their complex reaction mechanisms, and often, their poor optical signals, detailed mechanistic understandings of them are limited. Here, we develop a cryoreduction approach coupled to electron paramagnetic resonance measurements to study electron transfer between the copper centers in the copper nitrite reductase (CuNiR) family of enzymes. Unlike alternative methods used to study electron transfer reactions, the cryoreduction approach presented here allows observation of the redox state of both metal centers, a direct read‐out of electron transfer, determines the presence of the substrate/product in the active site and shows the importance of protein motion in inter‐copper electron transfer catalyzed by CuNiRs. Cryoreduction‐EPR is broadly applicable for the study of electron transfer in other redox enzymes and paves the way to explore transient states in multiple redox‐center containing proteins (homo and hetero metal ions).  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号